Most existing point cloud instance and semantic segmentation methods rely heavily on strong supervision signals, which require point-level labels for every point in the scene. However, such strong supervision suffers from large annotation costs, arousing the need to study efficient annotating. In this paper, we discover that the locations of instances matter for both instance and semantic 3D scene segmentation. By fully taking advantage of locations, we design a weakly supervised point cloud segmentation algorithm that only requires clicking on one point per instance to indicate its location for annotation. With over-segmentation for pre-processing, we extend these location annotations into segments as seg-level labels. We further design a segment grouping network (SegGroup) to generate point-level pseudo labels under seg-level labels by hierarchically grouping the unlabeled segments into the relevant nearby labeled segments, so that existing point-level supervised segmentation models can directly consume these pseudo labels for training. Experimental results show that our seg-level supervised method (SegGroup) achieves comparable results with the fully annotated point-level supervised methods. Moreover, it outperforms the recent weakly supervised methods given a fixed annotation budget.
翻译:大多数现有的点云样和语义分解方法都严重依赖强大的监督信号,这要求对现场的每个点进行点级标签。然而,这种强有力的监督有很高的批注成本,因此需要研究高效的批注。在本文件中,我们发现,实例的位置既重要,对语义 3D 场面分解也很重要。通过充分利用各个位置,我们设计了一种监管不力的点云分解算法,只需要点击每个点点即可显示其注释位置。在预处理中,我们将这些位置说明扩展为分类等级标签。我们进一步设计了一个分区分组网络(Segroup),通过将无标签的段按等级分组到相关贴标签的区段,在分类标签下产生点级的伪标签。因此,现有的点级监督分解算法可以直接将这些假标签用于培训。实验结果显示,我们的分类级监督方法(Segroup)取得了与完全说明的点级固定分解方法可比的结果。此外,它外形地显示,一种监管的方法是最新的固定方法。