In this paper, we study a stochastic disclosure control problem using information-theoretic methods. The useful data to be disclosed depend on private data that should be protected. Thus, we design a privacy mechanism to produce new data which maximizes the disclosed information about the useful data under a strong $\chi^2$-privacy criterion. For sufficiently small leakage, the privacy mechanism design problem can be geometrically studied in the space of probability distributions by a local approximation of the mutual information. By using methods from Euclidean information geometry, the original highly challenging optimization problem can be reduced to a problem of finding the principal right-singular vector of a matrix, which characterizes the optimal privacy mechanism. In two extensions we first consider a scenario where an adversary receives a noisy version of the user's message and then we look for a mechanism which finds $U$ based on observing $X$, maximizing the mutual information between $U$ and $Y$ while satisfying the privacy criterion on $U$ and $Z$ under the Markov chain $(Z,Y)-X-U$.
翻译:在本文中,我们使用信息理论方法研究随机披露控制问题。 需要披露的有用数据取决于应该保护的私人数据。 因此,我们设计了一种隐私机制,以产生新的数据,在强烈的$chi ⁇ 2$-privacy标准下,最大限度地增加关于有用数据的信息。 对于足够小的渗漏,隐私机制的设计问题可以是利用本地接近信息的可能性分布空间进行几何研究。 通过使用欧洲大陆信息几何方法,原始的极具挑战性的优化问题可以降低到找到一个矩阵的主要右向矢量的问题,而该矩阵是最佳隐私机制的特点。 在两个扩展中,我们首先考虑一个假设,即敌人收到用户信息的响亮版本,然后我们寻找一个机制,根据对美元的观察值找到美元,最大限度地增加美元与美元之间的相互信息,同时满足Markov z,Y)-X-U美元下的私隐标准。