Differential Privacy protects individuals' data when statistical queries are published from aggregated databases: applying "obfuscating" mechanisms to the query results makes the released information less specific but, unavoidably, also decreases its utility. Yet it has been shown that for discrete data (e.g. counting queries), a mandated degree of privacy and a reasonable interpretation of loss of utility, the Geometric obfuscating mechanism is optimal: it loses as little utility as possible. For continuous query results however (e.g. real numbers) the optimality result does not hold. Our contribution here is to show that optimality is regained by using the Laplace mechanism for the obfuscation. The technical apparatus involved includes the earlier discrete result by Ghosh et al., recent work on abstract channels and their geometric representation as hyper-distributions, and the dual interpretations of distance between distributions provided by the Kantorovich-Rubinstein Theorem.


翻译:当从综合数据库公布统计查询时,不同的隐私保护个人的数据:在查询结果中应用“模糊”机制,使得发布的信息不那么具体,但不可避免地会降低其效用。然而,已经表明,对于离散数据(例如计数查询)、规定的隐私程度和对效用损失的合理解释,几何模糊机制是最佳的:尽可能少失去效用。然而,对于连续查询的结果(例如实际数字),最佳性结果是站不住脚的。我们在这里的贡献是表明,通过使用Laplace机制进行混淆,可以重新取得最佳性。所涉及的技术设备包括Ghosh等人的早期离散结果、最近关于抽象渠道的工作及其几何表现为超分布,以及Kantorovich-Rubinstein Theorem提供的分布距离的双重解释。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
22+阅读 · 2021年4月10日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月29日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年7月5日
Arxiv
0+阅读 · 2021年7月4日
Arxiv
0+阅读 · 2021年7月3日
Arxiv
9+阅读 · 2021年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月29日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员