We introduce new inference procedures for counterfactual and synthetic control methods for policy evaluation. We recast the causal inference problem as a counterfactual prediction and a structural breaks testing problem. This allows us to exploit insights from conformal prediction and structural breaks testing to develop permutation inference procedures that accommodate modern high-dimensional estimators, are valid under weak and easy-to-verify conditions, and are provably robust against misspecification. Our methods work in conjunction with many different approaches for predicting counterfactual mean outcomes in the absence of the policy intervention. Examples include synthetic controls, difference-in-differences, factor and matrix completion models, and (fused) time series panel data models. Our approach demonstrates an excellent small-sample performance in simulations and is taken to a data application where we re-evaluate the consequences of decriminalizing indoor prostitution. Open-source software for implementing our conformal inference methods is available.
翻译:我们为政策评价引入了反事实和合成控制方法的新推论程序。我们把因果推论问题重新定位为反事实预测和结构性断裂测试问题。这使我们能够利用一致预测和结构断裂测试的洞察力,制定适应现代高维估测器的变异推论程序,这些程序在薄弱和容易核实的条件下有效,并且可以证明对错误区分具有很强的力度。我们的方法与许多不同的方法一起工作,在没有政策干预的情况下预测反事实平均结果。例子包括合成控制、差异、因数和矩阵完成模型以及(使用)时间序列小组数据模型。我们的方法展示了模拟中极好的小型抽样性能,并被引入了数据应用,我们在那里可以重新评价室内卖淫非犯罪化的后果。有用于执行我们一致推论方法的开放源软件。