This paper is concerned with test of the conditional independence. We first establish an equivalence between the conditional independence and the mutual independence. Based on the equivalence, we propose an index to measure the conditional dependence by quantifying the mutual dependence among the transformed variables. The proposed index has several appealing properties. (a) It is distribution free since the limiting null distribution of the proposed index does not depend on the population distributions of the data. Hence the critical values can be tabulated by simulations. (b) The proposed index ranges from zero to one, and equals zero if and only if the conditional independence holds. Thus, it has nontrivial power under the alternative hypothesis. (c) It is robust to outliers and heavy-tailed data since it is invariant to conditional strictly monotone transformations. (d) It has low computational cost since it incorporates a simple closed-form expression and can be implemented in quadratic time. (e) It is insensitive to tuning parameters involved in the calculation of the proposed index. (f) The new index is applicable for multivariate random vectors as well as for discrete data. All these properties enable us to use the new index as statistical inference tools for various data. The effectiveness of the method is illustrated through extensive simulations and a real application on causal discovery.


翻译:本文与有条件独立测试有关。 我们首先在有条件独立和相互独立之间确定等值。 基于等值, 我们提出一个指数, 通过量化变异变量之间的相互依赖性来测量有条件依赖性。 拟议的指数有几个吸引性的属性。 (a) 由于限制拟议指数的无效分布并不取决于数据的人口分布, 因而是免费的。 因此, 关键值可以通过模拟制表 。 (b) 拟议指数从零到一不等, 只有在有条件独立保持的情况下, 等于零。 因此, 在替代假设下, 新的指数具有非边际性力量。 (c) 它对外系和重成型数据是强大的, 因为它是无法有条件的单质变换的。 (d) 计算成本较低, 因为它包含简单的封闭式表达方式, 可以在四进制时间执行 。 (e) 对计算拟议指数所涉参数的调整不敏感。 (f) 新指数适用于多变量随机矢量以及离异数据。 (c) 新的指数在替代假设下具有非边际力量。 (c) 它对外系和重成型数据是强大的, 因为它是坚固的,因为它是坚固的, 因为它是坚固的,因为它是坚固的, 因为它是坚固的, 因为它不能有条件的,因为它含有, 并且能在统计工具中, 并且从各种推导性地显示了一种新的指数,, 使我们用新的指数能够使用新的指数在各种的推算法, 。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
【AAAI2021】记忆门控循环网络
专知会员服务
50+阅读 · 2020年12月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月8日
Distance covariance for random fields
Arxiv
0+阅读 · 2021年7月7日
Distributed Adaptive Huber Regression
Arxiv
0+阅读 · 2021年7月6日
Metric-Distortion Bounds under Limited Information
Arxiv
0+阅读 · 2021年7月6日
VIP会员
相关VIP内容
专知会员服务
77+阅读 · 2021年3月16日
【AAAI2021】记忆门控循环网络
专知会员服务
50+阅读 · 2020年12月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员