Transport map methods offer a powerful statistical learning tool that can couple a target high-dimensional random variable with some reference random variable using invertible transformations. This paper presents new computational techniques for building the Knothe--Rosenblatt (KR) rearrangement based on general separable functions. We first introduce a new construction of the KR rearrangement -- with guaranteed invertibility in its numerical implementation -- based on approximating the density of the target random variable using tensor-product spectral polynomials and downward closed sparse index sets. Compared to other constructions of KR arrangements based on either multi-linear approximations or nonlinear optimizations, our new construction only relies on a weighted least square approximation procedure. Then, inspired by the recently developed deep tensor trains (Cui and Dolgov, Found. Comput. Math. 22:1863--1922, 2022), we enhance the approximation power of sparse polynomials by preconditioning the density approximation problem using compositions of maps. This is particularly suitable for high-dimensional and concentrated probability densities commonly seen in many applications. We approximate the complicated target density by a composition of self-reinforced KR rearrangements, in which previously constructed KR rearrangements -- based on the same approximation ansatz -- are used to precondition the density approximation problem for building each new KR rearrangement. We demonstrate the efficiency of our proposed methods and the importance of using the composite map on several inverse problems governed by ordinary differential equations (ODEs) and partial differential equations (PDEs).
翻译:运输地图方法提供了强大的统计学习工具,可以将目标高维随机变量与一些参考随机变量相匹配,使用不可逆的变换。本文件展示了基于一般分解功能的建设 Knothe- Rosenblatt (KR) 重新排列的新的计算技术。 我们首先引入了KR 重新排列的新构造 -- -- 其数字实施中保证不可逆性 -- -- 其基础是近似目标随机变量的密度 -- -- 使用色素产品光谱多米亚和向下封闭的稀释指数组。与基于多线性部分近似或非线性优化的其他 KR 安排的构造相比,我们的新构造仅依赖于一个最不平的加权近似程序。我们最初开发的深度高压列列列列列(Cui和Dolgov, Found.Comput. 22:1863-1922, 2022) -- -- 我们用地图的构成来增强稀薄多尼基调的近似性力量,这特别适合基于多维度和集中性建筑结构中常见的直径直径直径直径直径直径直径直径直径方值,我们之前的系统直径结构结构结构结构中的各种组合中,我们所近目标直径直径直径对等的每个的精确图。</s>