This paper provides a first study of utilizing energy harvesting for sustainable machine learning in distributed networks. We consider a distributed learning setup in which a machine learning model is trained over a large number of devices that can harvest energy from the ambient environment, and develop a practical learning framework with theoretical convergence guarantees. We demonstrate through numerical experiments that the proposed framework can significantly outperform energy-agnostic benchmarks. Our framework is scalable, requires only local estimation of the energy statistics, and can be applied to a wide range of distributed training settings, including machine learning in wireless networks, edge computing, and mobile internet of things.
翻译:本文首次研究了利用能源收获在分布式网络中进行可持续机器学习的问题。我们考虑建立一个分布式学习机制,对一个机器学习模式进行大量设备的培训,这些设备可以从环境环境中获取能源,并开发一个实用的学习框架,并提供理论趋同保障。我们通过数字实验证明,拟议的框架可以大大超过能源-不可知性基准。 我们的框架可以扩展,只需要对能源统计进行局部估计,并且可以应用于广泛的分布式培训环境,包括在无线网络、边缘计算和移动互联网上进行机器学习。