In this paper we describe a parameterized family of first-order distributed optimization algorithms that enable a network of agents to collaboratively calculate a decision variable that minimizes the sum of cost functions at each agent. These algorithms are self-healing in that their correctness is guaranteed even if they are initialized randomly, agents drop in or out of the network, local cost functions change, or communication packets are dropped. Our algorithms are the first single-Laplacian methods to exhibit all of these characteristics. We achieve self-healing by sacrificing internal stability, a fundamental trade-off for single-Laplacian methods.


翻译:在本文中,我们描述一阶分配优化算法的参数化组合,它使代理网络能够合作计算一个决定变量,最大限度地减少每个代理的成本功能的总和。这些算法是自我健康的,因为即使它们随机初始化,代理在网络中或网络外的下降,本地成本功能的变化,或通信包被丢弃,它们也能够保证其正确性。我们的算法是第一个展示所有这些特征的单拉拉西人方法。我们通过牺牲内部稳定实现自我平衡,这是单拉巴西人方法的基本权衡。

0
下载
关闭预览

相关内容

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学中,代价函数,又叫损失函数或成本函数,它是将一个或多个变量的事件阈值映射到直观地表示与该事件。 一个优化问题试图最小化损失函数。 目标函数是损失函数或其负值,在这种情况下它将被最大化。
专知会员服务
41+阅读 · 2021年4月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
已删除
将门创投
12+阅读 · 2019年7月1日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年5月28日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
4+阅读 · 2019年1月14日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
已删除
将门创投
12+阅读 · 2019年7月1日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员