Performing bimanual tasks with dual robotic setups can drastically increase the impact on industrial and daily life applications. However, performing a bimanual task brings many challenges, like synchronization and coordination of the single-arm policies. This article proposes the Safe, Interactive Movement Primitives Learning (SIMPLe) algorithm, to teach and correct single or dual arm impedance policies directly from human kinesthetic demonstrations. Moreover, it proposes a novel graph encoding of the policy based on Gaussian Process Regression (GPR) where the single-arm motion is guaranteed to converge close to the trajectory and then towards the demonstrated goal. A modulation of the robot stiffness according to the epistemic uncertainty of the policy allows for easily reshaping the motion with human feedback and/or adapting to external perturbations. We tested the SIMPLe algorithm on a real dual arm set up where the teacher gave separate single-arm demonstrations and then successfully synchronized them only using kinesthetic feedback or where the original bimanual demonstration was locally reshaped to pick a box at a different height.
翻译:使用双机器人设置执行双臂任务可以大大增加对工业和日常生活应用的影响。 但是, 执行双臂任务可以带来许多挑战, 比如单臂政策的同步和协调。 本条提出安全、 互动运动原始学习( SIMPLe) 算法, 直接教授和纠正人类感官演示产生的单一或双臂阻力政策。 此外, 它提议根据高西亚进程回归( GPR) 来对单臂运动进行新颖的图形编码, 保证单臂运动接近轨迹, 然后接近显示的目标 。 根据单臂政策的缩影不确定性来调节机器人僵硬性, 使得可以很容易地用人类反馈和/ 或适应外部扰动来调整运动。 我们用真实的双臂设置测试了 SIMPL 算法, 教师在其中单独进行单臂演示, 然后成功地同步它们, 仅使用运动反馈, 或原始的双臂演示是本地重塑的, 在不同的高度选择一个盒子 。