项目名称: 生物基短链烷烃等离子耦合催化制烯烃的反应机理研究

项目编号: No.51476175

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 能源与动力工程

项目作者: 王晨光

作者单位: 中国科学院广州能源研究所

项目金额: 83万元

中文摘要: 本项目针对生物质基短链烷烃裂解制烯烃中存在的高反应温度、催化剂易失活和选择性不高问题,将高压放电等离子体和脱氢催化耦合应用于生物质短链烷烃的定向转化制备烯烃。通过高压放电可以在温和条件下活化短链烷烃,产生大量的自由基。通过改进放电反应器设计,优化反应条件,实现低温条件下的高效活化,阐明自由基生成和反应机理。通过制备高稳的Pt-Sn双金属纳米催化剂,借助催化剂的结构效应和电子转移效应,实现在相对低温条件下的短链烷烃高效定向转化,理解烷烃分子及其自由基在催化剂表面的反应机理。在深入了解短链烷烃的两种反应机理的基础上,以自由基的演变为主线,依照能量最优化原则,设计高压放电和催化转化的高效耦合,通过实验观测和能量路线分析,找到最优工况,为实现低温条件下短链烷烃的高效转化提供理论基础和技术支撑。

中文关键词: 生物质;短链烷烃;等离子体;催化裂解;烯烃

英文摘要: In order to produce alkenes from biomass drived short chain alkanes with low temperature,increase catalyst stability and increase alkene selectivity, plasma will combine with dehydrogenation catalyst. Plasma can active stable alkane moleculars in mild condition and produce radicals. Redesigned plasma reactor and finely tuned reaction parameters will prodvide us a low temperature technology to produce radicals from alkanes at low temperature.Also the radical reaction mechanism will be checked in details.Dehydrogenation Pt-Sn bimetallic nano catalyst with different carriers will be used to convert alkanes to alkenes.With the benefits of both geometrically and electronically from bimetallic nano catalysts, low reaction temperature will be achieved. Understanding the surface chemistry on the catalyst will help us figure out the reaction pathway of both moleculars and radicals.With the understanding of both mechanisms in different convert methods.A technology combined plasma and catalysis will be designed follow the low energy rule. Experimental observation and simulation modeling will find the best working conditions for biomasss drived short chain alkanes. The understanding of this conversion process will provide a unique low temperature conversion method from biomass-drived alkanes to alkenes.

英文关键词: biomass;short chain alkane;plasma;catalytic cracking;alkene

成为VIP会员查看完整内容
0

相关内容

专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
42+阅读 · 2021年6月2日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
30+阅读 · 2021年4月12日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
31+阅读 · 2020年12月14日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
八一八:我就没搞明白什么叫“纯钴”电池
无人机
34+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月15日
小贴士
相关主题
相关VIP内容
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
42+阅读 · 2021年6月2日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
30+阅读 · 2021年4月12日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
31+阅读 · 2020年12月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员