We propose a non-asymptotic convergence analysis of a two-step approach to learn a conditional value-at-risk (VaR) and expected shortfall (ES) in a nonparametric setting using Rademacher and Vapnik-Chervonenkis bounds. Our approach for the VaR is extended to the problem of learning at once multiple VaRs corresponding to different quantile levels. This results in efficient learning schemes based on neural network quantile and least-squares regressions. An a posteriori Monte Carlo (non-nested) procedure is introduced to estimate distances to the ground-truth VaR and ES without access to the latter. This is illustrated using numerical experiments in a Gaussian toy-model and a financial case-study where the objective is to learn a dynamic initial margin.


翻译:我们建议对两步方法进行非抽吸趋同分析,以便利用Rademacher和Vapnik-Chervonenkis界限,在非参数环境中学习有条件的风险值和预期的短缺值。我们对于VaR的方法将扩展至与不同四分位水平相对应的多次空位的学习问题。这导致以神经网络孔径和最小方位回归为基础的高效学习计划。引入了一个后传蒙特卡洛(不遗漏)程序,以估计与地面轨迹VaR和ES的距离,而不能与后者接触。在高山玩具模型中进行数字实验,并进行财务案例研究,目的是学习动态的初步差数。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员