Many causal and structural effects depend on regressions. Examples include policy effects, average derivatives, regression decompositions, average treatment effects, causal mediation, and parameters of economic structural models. The regressions may be high dimensional, making machine learning useful. Plugging machine learners into identifying equations can lead to poor inference due to bias from regularization and/or model selection. This paper gives automatic debiasing for linear and nonlinear functions of regressions. The debiasing is automatic in using Lasso and the function of interest without the full form of the bias correction. The debiasing can be applied to any regression learner, including neural nets, random forests, Lasso, boosting, and other high dimensional methods. In addition to providing the bias correction we give standard errors that are robust to misspecification, convergence rates for the bias correction, and primitive conditions for asymptotic inference for estimators of a variety of estimators of structural and causal effects. The automatic debiased machine learning is used to estimate the average treatment effect on the treated for the NSW job training data and to estimate demand elasticities from Nielsen scanner data while allowing preferences to be correlated with prices and income.
翻译:许多因果和结构影响取决于回归,例如政策效果、平均衍生物、回归分解、平均处理效果、因果关系、因果调解和经济结构模型的参数。回归可能是高维的,使机器学习者能够学习机器。将机器学习者纳入确定方程可能会导致错误推断,因为正规化和/或模型选择中的偏差,结果导致错位。本文对线性和非线性回归功能自动作出偏差。在使用拉索和利息函数时,不采用偏见纠正的全部形式,这种偏差是自动的。这种偏差可适用于任何回归学习者,包括神经网、随机森林、拉索、推力和其他高维度方法。除了提供偏差纠正外,我们还给出标准错误,对偏差的区分、偏差纠正的趋同率和对各种结构性和因果效应估计者无偏差的原始推论。自动偏差的机器学习用于估计任何回归学习者所受处理的平均治疗效果,包括神经系统的工作偏差、随机森林、拉索、推力和其他高度方法。除了提供偏差纠正偏差性纠正外,我们给出标准错误错误错误的错误,以估计数据,同时要求进行对比分析。