In this article we investigate a system of geometric evolution equations describing a curvature driven motion of a family of 3D curves in the normal and binormal directions. Evolving curves may be subject of mutual interactions having both local or nonlocal character where the entire curve may influence evolution of other curves. Such an evolution and interaction can be found in applications. We explore the direct Lagrangian approach for treating the geometric flow of such interacting curves. Using the abstract theory of nonlinear analytic semi-flows, we are able to prove local existence, uniqueness and continuation of classical H\"older smooth solutions to the governing system of nonlinear parabolic equations. Using the finite volume method, we construct an efficient numerical scheme solving the governing system of nonlinear parabolic equations. Additionally, a nontrivial tangential velocity is considered allowing for redistribution of discretization nodes. We also present several computational studies of the flow combining the normal and binormal velocity and considering nonlocal interactions.
翻译:在本条中,我们调查了一套几何进化方程系统,描述正常方向和双态方向的三维曲线大家庭的曲度驱动运动。进化曲线可能是具有本地或非本地特性的相互作用的主题,整个曲线可能影响到其他曲线的演变。这种演变和相互作用可以在应用中找到。我们探索了处理这种相互作用曲线的几何流动的直接拉格朗加方法。我们利用非线性分析半流的抽象理论,能够证明传统的H\“老式”光滑的解决方案在当地的存在、独特性和持续。我们使用有限数量方法,构建了一个高效的数字方法,解决非线性抛物方程的治理系统。此外,一种非边际流速度被认为允许分离节点的再分配。我们还对将正常和双向速度相结合的流进行了若干计算研究,并考虑到非本地的交互作用。