We provide optimal lower and upper bounds for the augmented Kullback-Leibler divergence in terms of the augmented total variation distance between two probability measures defined on two Euclidean spaces having different dimensions. We call them refined Pinsker's and reverse Pinsker's inequalities, respectively.
翻译:我们提供了最佳的下限和上界线,以弥补库尔后背-利伯尔之间扩大的差别,即在两个具有不同维度的欧几里德空间界定的两种概率测量方法之间扩大的全差距离。 我们分别称之为精细的平斯克和反平斯克的不平等。