Generating diverse populations of high quality solutions has gained interest as a promising extension to the traditional optimization tasks. This work contributes to this line of research with an investigation on evolutionary diversity optimization for three of the most well-studied permutation problems, namely the Traveling Salesperson Problem (TSP), both symmetric and asymmetric variants, and Quadratic Assignment Problem (QAP). It includes an analysis of the worst-case performance of a simple mutation-only evolutionary algorithm with different mutation operators, using an established diversity measure. Theoretical results show many mutation operators for these problems guarantee convergence to maximally diverse populations of sufficiently small size within cubic to quartic expected run-time. On the other hand, the result on QAP suggests that strong mutations give poor worst-case performance, as mutation strength contributes exponentially to the expected run-time. Additionally, experiments are carried out on QAPLIB and synthetic instances in unconstrained and constrained settings, and reveal much more optimistic practical performances, while corroborating the theoretical finding regarding mutation strength. These results should serve as a baseline for future studies.
翻译:作为传统优化任务的一个有希望的延伸,产生各种高质量解决方案的多样化人群已引起人们的兴趣,作为传统优化任务的有希望的延伸,这项工作有助于研究这一系列的研究,通过对三种最受研究的变异问题,即对称和不对称的销售人员问题(TSP)和夸拉蒂分配问题(QAP)的演进多样化优化研究,包括分析与不同变异操作者一起的简单、只变异的进化演算法的最坏的性能,采用既定的多样性计量标准。理论结果显示,这些问题的许多变异操作者保证了在立方体至梯体预期运行时间内数量足够小、规模足够多的变异性人口趋于融合。另一方面,QAP的结果表明,强劲的变异性使情况表现最差,因为突变力对预期的运行时间具有指数性能。此外,对QAPLIB和在不受控制和制约的环境中的合成情况进行了实验,并展示了更乐观的实际表现,同时证实了关于变异性力量的理论发现。这些结果应当作为未来研究的基线。