Motivated by the challenge of sampling Gibbs measures with nonconvex potentials, we study a continuum birth-death dynamics. We prove that the probability density of the birth-death governed by Kullback-Leibler divergence or by $\chi^2$ divergence converge exponentially fast to the Gibbs equilibrium measure with a universal rate that is independent of the potential barrier. To build a practical numerical sampler based on the pure birth-death dynamics, we consider an interacting particle system which relies on kernel-based approximations of the measure and retains the gradient-flow structure. We show on the torus that the kernelized dynamics $\Gamma$-converges, on finite time intervals, to the pure birth-death dynamics as the kernel bandwidth shrinks to zero. Moreover we provide quantitative estimates on the bias of minimizers of the energy corresponding to the kernalized dynamics. Finally we prove the long-time asymptotic results on the convergence of the asymptotic states of the kernalized dynamics towards the Gibbs measure.
翻译:基于对具有非混凝土潜力的Gibbs措施进行抽样调查的挑战,我们研究一种连续的出生-死亡动态。我们证明由Kullback-Lebel差异或美元=chi ⁇ 2美元差异决定的出生-死亡概率密度与Gibs均衡度的指数性一致,其普遍率与潜在障碍无关。为了建立一个基于纯出生-死亡动态的实用数字抽样器,我们考虑一个交互式粒子系统,该系统依赖于该计量的内核近似,并保留梯度-流结构。我们通过图示显示,内核化动态 $\Gamma$-converges,在一定的间隔内,与纯粹的分娩-死亡动态相匹配,因为内核带带带带宽缩为零。此外,我们还提供了与内核化动态相对的能源最小化偏差的定量估计值。最后,我们证明,在内核化动态的无症状状态与Gibbbex测量的趋同方面,长期的无症状结果。