In the past few years, Softmax has become a common component in neural network frameworks. In this paper, a gradient decay hyperparameter is introduced in Softmax to control the probability-dependent gradient decay rate during training. By following the theoretical analysis and empirical results of a variety of model architectures trained on MNIST, CIFAR-10/100 and SVHN, we find that the generalization performance depends significantly on the gradient decay rate as the confidence probability rises, i.e., the gradient decreases convexly or concavely as the sample probability increases. Moreover, optimization with the small gradient decay shows a similar curriculum learning sequence where hard samples are in the spotlight only after easy samples are convinced sufficiently, and well-separated samples gain a higher gradient to reduce intra-class distance. Based on the analysis results, we can provide evidence that the large margin Softmax will affect the local Lipschitz constraint of the loss function by regulating the probability-dependent gradient decay rate. This paper provides a new perspective and understanding of the relationship among concepts of large margin Softmax, local Lipschitz constraint and curriculum learning by analyzing the gradient decay rate. Besides, we propose a warm-up strategy to dynamically adjust Softmax loss in training, where the gradient decay rate increases from over-small to speed up the convergence rate.


翻译:在过去几年里, Softmax 已成为神经网络框架的一个共同组成部分。 在本文中, 在Softmax 中引入了梯度衰减双参数, 以控制培训过程中的概率依赖梯度衰减率。 在对MNIST、 CIFAR- 10/100 和 SVHN 进行培训的各种模型结构进行理论分析和实验后, 我们发现, 总体性能在很大程度上取决于梯度衰减率的提高, 也就是, 梯度随着样本概率的增加, 梯度会降低 。 此外, 小梯度衰减的优化显示了类似的课程学习顺序, 硬样品只有在很容易地说服样本之后才会成为受关注对象, 而精密分离的样品会获得更高的梯度, 以减少阶级间的距离。 根据分析结果, 我们可以提供证据, 大边距 Softmax 将会通过调节依赖概率的梯度衰减率来影响损失功能的当地Lipschitz的制约。 本文提供了一种新视角和理解大边距软度、 利普氏 质衰减 、 度约束 度 度 度 递增 度 和 递增 课程 学习 递增 递增 速度 战略 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月15日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员