We consider the problem of online unsupervised cross-domain adaptation, where two independent but related data streams with different feature spaces -- a fully labeled source stream and an unlabeled target stream -- are learned together. Unique characteristics and challenges such as covariate shift, asynchronous concept drifts, and contrasting data throughput arises. We propose ACDC, an adversarial unsupervised domain adaptation framework that handles multiple data streams with a complete self-evolving neural network structure that reacts to these defiances. ACDC encapsulates three modules into a single model: A denoising autoencoder that extracts features, an adversarial module that performs domain conversion, and an estimator that learns the source stream and predicts the target stream. ACDC is a flexible and expandable framework with little hyper-parameter tunability. Our experimental results under the prequential test-then-train protocol indicate an improvement in target accuracy over the baseline methods, achieving more than a 10\% increase in some cases.
翻译:我们考虑了在线不受监督的跨域适应问题,即两个独立但相关且具有不同特征空间的数据流 -- -- 一个完全标签的源流和一个未标签的目标流 -- -- 一起学习。独特的特征和挑战,如共变转移、非同步概念漂移和对比数据通过量。我们提议ACDC,这是一个对抗性且不受监督的域适应框架,处理多种数据流,并有一个完整的自演神经网络结构,对这些违抗反应。ACDC 将三个模块包装成一个单一模型:一个分离的自动编码模块,提取特征,一个进行域转换的对抗模块,以及一个了解源流并预测目标流的估算器。ACDC是一个灵活和可扩展的框架,只有少量的超参数的金枪鱼能力。我们在子宫前测试-天线协议下的实验结果显示,目标精确度高于基线方法,在某些情况下增加了10 ⁇ 以上。