Class imbalance distribution widely exists in real-world engineering. However, the mainstream optimization algorithms that seek to minimize error will trap the deep learning model in sub-optimums when facing extreme class imbalance. It seriously harms the classification precision, especially on the minor classes. The essential reason is that the gradients of the classifier weights are imbalanced among the components from different classes. In this paper, we propose Attraction-Repulsion-Balanced Loss (ARB-Loss) to balance the different components of the gradients. We perform experiments on the large-scale classification and segmentation datasets and our ARB-Loss can achieve state-of-the-art performance via only one-stage training instead of 2-stage learning like nowadays SOTA works.


翻译:在现实世界工程中,分类不平衡分布广泛存在。然而,在面临极端分类不平衡时,主流优化算法试图将错误降到最低程度,从而将深学习模式困在亚最佳模式中。这严重损害了分类精确性,特别是小类的分类精确性。关键的原因是,分类器重量的梯度在不同类别的组成部分之间不平衡。在本文中,我们提议对梯度的不同组成部分进行平衡。我们在大规模分类和分解数据集上进行实验,我们的ARB-Loss只能通过一阶段培训而不是像现在的SOTA那样的两阶段学习来达到最先进的性能。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员