Meta Reinforcement Learning (MRL) enables an agent to learn from a limited number of past trajectories and extrapolate to a new task. In this paper, we attempt to improve the robustness of MRL. We build upon model-agnostic meta-learning (MAML) and propose a novel method to generate adversarial samples for MRL by using Generative Adversarial Network (GAN). That allows us to enhance the robustness of MRL to adversal attacks by leveraging these attacks during meta training process.


翻译:元加强学习使代理商能够从有限的过去轨迹中学习,并推断出新的任务。在本文件中,我们试图提高MRL的稳健性。我们利用模型-不可知性元学习(MAML),提出了一种新颖的方法,利用基因反向网络(GAN)为MRL生成对抗性样本。这使我们能够通过在元培训过程中利用这些攻击,提高MRL对反向攻击的稳健性。

1
下载
关闭预览

相关内容

元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
PaperWeekly
120+阅读 · 2019年4月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月16日
Arxiv
0+阅读 · 2021年6月15日
Arxiv
5+阅读 · 2020年6月16日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
PaperWeekly
120+阅读 · 2019年4月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
0+阅读 · 2021年6月16日
Arxiv
0+阅读 · 2021年6月15日
Arxiv
5+阅读 · 2020年6月16日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Arxiv
7+阅读 · 2018年6月8日
Top
微信扫码咨询专知VIP会员