We introduce novel high order well-balanced finite volume methods for the full compressible Euler system with gravity source term. They require no a priori knowledge of the hydrostatic solution which is to be well-balanced and are not restricted to certain classes of hydrostatic solutions. In one spatial dimension we construct a method that exactly balances a high order discretization of any hydrostatic state. The method is extended to two spatial dimensions using a local high order approximation of a hydrostatic state in each cell. The proposed simple, flexible, and robust methods are not restricted to a specific equation of state. Numerical tests verify that the proposed method improves the capability to accurately resolve small perturbations on hydrostatic states.
翻译:我们为完全压缩的 Euler 系统引入了新型高顺序和高度平衡的有限体积方法,使用重力源术语。这些方法不需要事先了解流压溶液,这种溶液应完全平衡,并且不限于某些类静压溶液。在一个空间层面,我们构建了一种完全平衡任何静压状态高度分解的方法。该方法使用每个细胞中静水状态的局部高排序近似,扩大到两个空间层面。提议的简单、灵活和稳健的方法并不局限于特定的状态方程式。数字测试证实拟议方法提高了准确解决静水状态小扰动的能力。