Biot's equations of poroelasticity contain a parabolic system for the evolution of the pressure, which is coupled with a quasi-stationary equation for the stress tensor. Thus, it is natural to extend the existing work on isogeometric space-time methods to this more advanced framework of a partial differential-algebraic equation (PDAE). A space-time approach based on finite elements has already been introduced. But we present a new weak formulation in space and time that is appropriate for an isogeometric discretization and analyze the convergence properties. Our approach is based on a single variational problem and hence differs from the iterative space-time schemes considered so far. Further, it enables high-order convergence. Numerical experiments that have been carried out confirm the theoretical findings.
翻译:生物量度方程式包含压力演化的抛物线系统,同时对压力振动进行准静止方程式。 因此,将目前关于等离子测量空间-时方法的工作扩大到这个较先进的局部差位数等式框架(PDAE)是自然的。 已经采用了以有限元素为基础的时空方法。 但我们在空间和时间上提出了一种新的微弱配方,适合异子分解和分析趋同特性。 我们的方法基于一个单一的变异问题,因此与迄今为止所考虑的迭接空间-时制方案不同。此外,它也使得高顺序趋同成为可能。 已经进行的数值实验证实了理论结论。