From ancient to modern times, acoustic structures have been used to control the propagation of acoustic waves. However, the design of the acoustic structures has remained widely a time-consuming and computational resource-consuming iterative process. In recent years, Deep Learning has attracted unprecedented attention for its ability to tackle hard problems with huge datasets, which has achieved state-of-the-art results in various tasks. In this work, an acoustic structure design method is proposed based on deep learning. Taking the design of multi-order Helmholtz resonator for instance, we experimentally demonstrate the effectiveness of the proposed method. Our method is not only able to give a very accurate prediction of the geometry of the acoustic structures with multiple strong-coupling parameters, but also capable of improving the performance of evolutionary approaches in optimization for a desired property. Compared with the conventional numerical methods, our method is more efficient, universal and automatic, which has a wide range of potential applications, such as speech enhancement, sound absorption and insulation.


翻译:从古到现代,声学结构一直被用来控制声波的传播,然而,声学结构的设计仍然广泛是一个耗时和计算资源耗时的迭代过程。近年来,深学习吸引了前所未有的注意力,以其有能力解决庞大数据集的难题,在各种任务中取得了最先进的成果。在这项工作中,根据深层次的学习,提出了声学结构设计方法。例如,我们实验地展示了拟议方法的有效性。我们的方法不仅能够非常准确地预测具有多重强相联参数的声学结构的几何性,而且还能够改进对理想属性进行优化的进化方法的性能。与常规的数值方法相比,我们的方法效率更高、普遍性和自动性,具有广泛的潜在应用,如语音增强、声音吸收和隔热等。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
6+阅读 · 2020年10月8日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
15+阅读 · 2018年6月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员