Finding an effective medical treatment often requires a search by trial and error. Making this search more efficient by minimizing the number of unnecessary trials could lower both costs and patient suffering. We formalize this problem as learning a policy for finding a near-optimal treatment in a minimum number of trials using a causal inference framework. We give a model-based dynamic programming algorithm which learns from observational data while being robust to unmeasured confounding. To reduce time complexity, we suggest a greedy algorithm which bounds the near-optimality constraint. The methods are evaluated on synthetic and real-world healthcare data and compared to model-free reinforcement learning. We find that our methods compare favorably to the model-free baseline while offering a more transparent trade-off between search time and treatment efficacy.


翻译:寻找有效的医疗往往需要通过试验和错误进行搜索。 通过尽量减少不必要的试验次数来提高这种搜索的效率,可以降低费用和病人的痛苦。 我们将此问题正式化为学习一项政策,利用因果推断框架在最低数量的试验中找到近乎最佳的治疗。 我们给出基于模型的动态编程算法,从观察数据中学习,同时又强健和不测的混杂。 为了降低时间复杂性,我们建议采用贪婪的算法,将近乎最佳的限制因素捆绑在一起。 这种方法根据合成和现实世界的保健数据进行评估,并与无模型的强化学习进行比较。 我们发现,我们的方法与无模型基线比较,同时在搜索时间和治疗效果之间提供更加透明的交换。

1
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
57+阅读 · 2020年5月9日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月12日
Arxiv
0+阅读 · 2021年4月9日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
57+阅读 · 2020年5月9日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员