Visual Text-to-Speech (VTTS) aims to take the spatial environmental image as the prompt to synthesize the reverberation speech for the spoken content. Previous research focused on the RGB modality for global environmental modeling, overlooking the potential of multi-source spatial knowledge like depth, speaker position, and environmental semantics. To address the issues, we propose a novel multi-source spatial knowledge understanding scheme for immersive VTTS, termed MS$^2$KU-VTTS. Specifically, we first prioritize RGB image as the dominant source and consider depth image, speaker position knowledge from object detection, and semantic captions from image understanding LLM as supplementary sources. Afterwards, we propose a serial interaction mechanism to deeply engage with both dominant and supplementary sources. The resulting multi-source knowledge is dynamically integrated based on their contributions.This enriched interaction and integration of multi-source spatial knowledge guides the speech generation model, enhancing the immersive spatial speech experience.Experimental results demonstrate that the MS$^2$KU-VTTS surpasses existing baselines in generating immersive speech. Demos and code are available at: https://github.com/MS2KU-VTTS/MS2KU-VTTS.
翻译:暂无翻译