Quantum illumination is a technique for detecting the presence of a target in a noisy environment by means of a quantum probe. We prove that the two-mode squeezed vacuum state is the optimal probe for quantum illumination in the scenario of asymmetric discrimination, where the goal is minimizing the probability of a false positive with a given probability of a false negative. Quantum illumination with two-mode squeezed vacuum states offers a 6 dB advantage in the error probability exponent compared to illumination with coherent states. Whether more advanced quantum illumination strategies may offer further improvements had been a longstanding open question. Our fundamental result proves that nothing can be gained by considering more exotic quantum states, such as e.g. multi-mode entangled states. Our proof is based on a new fundamental entropic inequality for the noisy quantum Gaussian attenuators. We also prove that without access to a quantum memory, the optimal probes for quantum illumination are the coherent states.
翻译:量子光照是一种通过量子探测器来探测在噪音环境中存在目标的技术。 我们证明两个模式挤压的真空状态是非对称歧视情景下量子光照的最佳探测器, 目标是将假阳性的概率降到最低, 并给定一个假负概率。 由两个模式挤压的真空状态下的量子光照提供了6 dB 误差概率的优势, 而不是一致的状态下光照的优势。 更先进的量子光照战略能否带来进一步的改进是一个长期的未决问题。 我们的基本结果证明, 考虑更多的异端量度状态, 如多模式缠绕的状态, 没有什么好处。 我们的证据基于噪音量子高控点的一种新的基本昆虫不平等性。 我们还证明, 如果不能获得量子记忆, 量子辐射的最佳探测器就是连贯的状态。