Conventional federated learning (FL) trains one global model for a federation of clients with decentralized data, reducing the privacy risk of centralized training. However, the distribution shift across non-IID datasets, often poses a challenge to this one-model-fits-all solution. Personalized FL aims to mitigate this issue systematically. In this work, we propose APPLE, a personalized cross-silo FL framework that adaptively learns how much each client can benefit from other clients' models. We also introduce a method to flexibly control the focus of training APPLE between global and local objectives. We empirically evaluate our method's convergence and generalization behaviors, and perform extensive experiments on two benchmark datasets and two medical imaging datasets under two non-IID settings. The results show that the proposed personalized FL framework, APPLE, achieves state-of-the-art performance compared to several other personalized FL approaches in the literature. The code is publicly available at https://github.com/ljaiverson/pFL-APPLE.


翻译:常规联邦学习(FL)为拥有分散数据的客户联合会培训一种全球模式,以减少集中培训的隐私风险。然而,在非IID数据集之间的分布转移往往对这个一模一样的全方位解决方案构成挑战。个性化FL旨在系统地缓解这一问题。在这项工作中,我们提出PAPLE,这是一个个性化的跨Sillo FL框架,适应性地了解每个客户可从其他客户模式中受益的程度。我们还引入了灵活控制全球和地方目标之间培训APLE重点的方法。我们实证地评估了我们方法的趋同和一般化行为,并在两个非IID设置下对两个基准数据集和两个医疗成像数据集进行了广泛的实验。结果显示,拟议的个性化FL框架APPLE与文献中其他个个性化FL方法相比,实现了最先进的业绩。该代码公布在https://github.com/ljaiverson/pFL-APPLLE。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年7月22日
Arxiv
0+阅读 · 2022年7月21日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员