Platform trials are randomized clinical trials that allow simultaneous comparison of multiple interventions, usually against a common control. Arms to test experimental interventions may enter and leave the platform over time. This implies that the number of experimental intervention arms in the trial may change over time. Determining optimal allocation rates to allocate patients to the treatment and control arms in platform trials is challenging because the change in treatment arms implies that also the optimal allocation rates will change when treatments enter or leave the platform. In addition, the optimal allocation depends on the analysis strategy used. In this paper, we derive optimal treatment allocation rates for platform trials with shared controls, assuming that a stratified estimation and testing procedure based on a regression model, is used to adjust for time trends. We consider both, analysis using concurrent controls only as well as analysis methods based on also non-concurrent controls and assume that the total sample size is fixed. The objective function to be minimized is the maximum of the variances of the effect estimators. We show that the optimal solution depends on the entry time of the arms in the trial and, in general, does not correspond to the square root of $k$ allocation rule used in the classical multi-arm trials. We illustrate the optimal allocation and evaluate the power and type 1 error rate compared to trials using one-to-one and square root of $k$ allocations by means of a case study.


翻译:平台试验是一种随机临床试验,允许同时比较多种干预措施,通常与一个共同的对照组进行比较。试验中用于测试实验干预措施的组可以随时加入或离开平台。这意味着试验中的实验组数量可能随时间而变化。确定将患者分配到治疗组和对照组的最佳分配率是具有挑战性的,因为处理组的变化意味着当治疗措施进入或离开平台时,最佳分配率也会发生变化。此外,最佳分配率取决于所使用的分析策略。在本文中,我们推导出具有共享对照组的平台试验的最佳治疗分配率,假设基于回归模型的分层估计和测试程序用于调整时间趋势。我们同时考虑仅使用并发对照及使用非并发对照方案进行分析的情况,假设总样本量是固定的。最小化的目标函数是效应估计器方差的最大值。我们展示了最优解取决于试验中处理组的加入时间,并且通常不对应于经典的多灵敏度试验中使用的k的平方根分配规则。我们通过案例研究说明了最佳分配方案,并通过评估试验功效和一类错误率来比较其与使用一对一和k的平方根分配方案的试验。

0
下载
关闭预览

相关内容

【AAAI2022】跨域少样本图分类
专知会员服务
29+阅读 · 2022年1月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月20日
Arxiv
33+阅读 · 2022年2月15日
VIP会员
相关VIP内容
【AAAI2022】跨域少样本图分类
专知会员服务
29+阅读 · 2022年1月22日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员