Platform trials are randomized clinical trials that allow simultaneous comparison of multiple interventions, usually against a common control. Arms to test experimental interventions may enter and leave the platform over time. This implies that the number of experimental intervention arms in the trial may change over time. Determining optimal allocation rates to allocate patients to the treatment and control arms in platform trials is challenging because the change in treatment arms implies that also the optimal allocation rates will change when treatments enter or leave the platform. In addition, the optimal allocation depends on the analysis strategy used. In this paper, we derive optimal treatment allocation rates for platform trials with shared controls, assuming that a stratified estimation and testing procedure based on a regression model, is used to adjust for time trends. We consider both, analysis using concurrent controls only as well as analysis methods based on also non-concurrent controls and assume that the total sample size is fixed. The objective function to be minimized is the maximum of the variances of the effect estimators. We show that the optimal solution depends on the entry time of the arms in the trial and, in general, does not correspond to the square root of $k$ allocation rule used in the classical multi-arm trials. We illustrate the optimal allocation and evaluate the power and type 1 error rate compared to trials using one-to-one and square root of $k$ allocations by means of a case study.
翻译:平台试验是一种随机临床试验,允许同时比较多种干预措施,通常与一个共同的对照组进行比较。试验中用于测试实验干预措施的组可以随时加入或离开平台。这意味着试验中的实验组数量可能随时间而变化。确定将患者分配到治疗组和对照组的最佳分配率是具有挑战性的,因为处理组的变化意味着当治疗措施进入或离开平台时,最佳分配率也会发生变化。此外,最佳分配率取决于所使用的分析策略。在本文中,我们推导出具有共享对照组的平台试验的最佳治疗分配率,假设基于回归模型的分层估计和测试程序用于调整时间趋势。我们同时考虑仅使用并发对照及使用非并发对照方案进行分析的情况,假设总样本量是固定的。最小化的目标函数是效应估计器方差的最大值。我们展示了最优解取决于试验中处理组的加入时间,并且通常不对应于经典的多灵敏度试验中使用的k的平方根分配规则。我们通过案例研究说明了最佳分配方案,并通过评估试验功效和一类错误率来比较其与使用一对一和k的平方根分配方案的试验。