In this paper, we propose a tightly-coupled, multi-modal simultaneous localization and mapping (SLAM) framework, integrating an extensive set of sensors: IMU, cameras, multiple lidars, and Ultra-wideband (UWB) range measurements, hence referred to as VIRAL (visual-inertial-ranging-lidar) SLAM. To achieve such a comprehensive sensor fusion system, one has to tackle several challenges such as data synchronization, multi-threading programming, bundle adjustment (BA), and conflicting coordinate frames between UWB and the onboard sensors, so as to ensure real-time localization and smooth updates in the state estimates. To this end, we propose a two stage approach. In the first stage, lidar, camera, and IMU data on a local sliding window are processed in a core odometry thread. From this local graph, new key frames are evaluated for admission to a global map. Visual feature-based loop closure is also performed to supplement the global factor graph with loop constraints. When the global factor graph satisfies a condition on spatial diversity, the BA process will be triggered to update the coordinate transform between UWB and onboard SLAM systems. The system then seamlessly transitions to the second stage where all sensors are tightly integrated in the odometry thread. The capability of our system is demonstrated via several experiments on high-fidelity graphical-physical simulation and public datasets.
翻译:在本文中,我们提出一个紧密结合的多式同时本地化和绘图(SLAM)框架,整合一套广泛的传感器:IMU、照相机、多利达和超大波段(UWB)测距仪,因此称为VIRAL(视觉-内皮-范围-利达尔)SLAM。为了实现这样一个全面的传感器聚合系统,我们必须应对若干挑战,如数据同步、多读编程、捆绑调整(BA)以及UWB和机载传感器之间相互冲突的协调框架,以确保实时本地化和州际估算的平稳更新。为此,我们建议采取两个阶段的方法。在第一阶段,将Lidar、相机和本地滑动窗口的IMUMU数据处理成一个核心odo度线。从这个本地图中,对新的关键框架进行评估,以便加入全球地图。基于视觉特征的环路圈关闭也用循环限制来补充全球要素图。当全球要素图满足空间多样性的条件时,BA进程将启动更新UDAR、SB和SLMASM系统之间的平稳转换。