The ability of accurate depth prediction by a CNN is a major challenge for its wide use in practical visual SLAM applications, such as enhanced camera tracking and dense mapping. This paper is set out to answer the following question: Can we tune a depth prediction CNN with the help of a visual SLAM algorithm even if the CNN is not trained for the current operating environment in order to benefit the SLAM performance? To this end, we propose a novel online adaptation framework consisting of two complementary processes: a SLAM algorithm that is used to generate keyframes to fine-tune the depth prediction and another algorithm that uses the online adapted depth to improve map quality. Once the potential noisy map points are removed, we perform global photometric bundle adjustment (BA) to improve the overall SLAM performance. Experimental results on both benchmark datasets and a real robot in our own experimental environments show that our proposed method improves the overall SLAM accuracy. We demonstrate the use of regularization in the training loss as an effective means to prevent catastrophic forgetting. In addition, we compare our online adaptation framework against the state-of-the-art pre-trained depth prediction CNNs to show that our online adapted depth prediction CNN outperforms the depth prediction CNNs that have been trained on a large collection of datasets.
翻译:CNN准确的深度预测能力是一个重大挑战,因为它广泛应用于实际直观的SLAM应用程序,例如强化的摄像跟踪和密集的绘图。本文旨在回答以下的问题:我们能否借助视觉SLAM算法来调整对CNN的深度预测,即使CNN没有为当前运行环境接受过培训,从而有利于SLAM的绩效?为此,我们提议了一个新的在线适应框架,由两个互补程序组成:一个SLAM算法,用来生成精细调整深度预测的关键框架,另一个使用在线调整深度来提高地图质量的算法。一旦潜在的扰动地图点被删除,我们就进行全球光度测包调整,以改进SLMM的总体性能。关于基准数据集和我们自己实验环境中真正的机器人的实验结果表明,我们提出的方法提高了SLAM的总体准确性。我们展示了培训损失的正规化,作为防止灾难性遗忘的有效手段。此外,我们比较了我们的在线适应框架,与经过事先调整的深度预测的状态,即改进的深度预测CNNCNN的大规模深度预测显示我们经过培训的深度预测。