The additive hazards model specifies the effect of covariates on the hazard in an additive way, in contrast to the popular Cox model, in which it is multiplicative. As non-parametric model, it offers a very flexible way of modeling time-varying covariate effects. It is most commonly estimated by ordinary least squares. In this paper we consider the case where covariates are bounded, and derive the maximum likelihood estimator under the constraint that the hazard is non-negative for all covariate values in their domain. We describe an efficient algorithm to find the maximum likelihood estimator. The method is contrasted with the ordinary least squares approach in a simulation study, and the method is illustrated on a realistic data set.
翻译:添加性危险模型以添加性方式具体说明共变对危险的影响,这与流行的Cox模型不同,该模型是多倍的。作为非参数模型,该模型提供了一种非常灵活的模拟时间变换共变效应的方法。它通常由普通最小的方形来估计。在本文中,我们考虑了共变被捆绑的情况,并得出最大可能性的估测器,其限制是,危险对于其域内的所有共变值都是非负性的。我们描述了一种有效的算法,以找到最大的可能性估测器。在模拟研究中,该方法与普通最小的方形法相对,并在一个现实的数据集中演示该方法。