Multivariate time series exhibit two types of dependence: across variables and across time points. Vine copulas are graphical models for the dependence and can conveniently capture both types of dependence in the same model. We derive the maximal class of graph structures that guarantee stationarity under a natural and verifiable condition called translation invariance. We propose computationally efficient methods for estimation, simulation, prediction, and uncertainty quantification and show their validity by asymptotic results and simulations. The theoretical results allow for misspecified models and, even when specialized to the iid case, go beyond what is available in the literature. Their proofs are based on new results for general semiparametric method-of-moment estimators, which shall be of independent interest. The new model class is illustrated by an application to forecasting returns of a portfolio of 20 stocks, where they show excellent forecast performance. The paper is accompanied by an open source software implementation.
翻译:多变量时间序列显示出两种依赖性:不同变量和不同时间点。 葡萄干合金是依赖性的图形模型,可以方便地捕捉同一模型中的两种依赖性。 我们得出在自然和可核查的条件下保证固定性的最大图表结构类别, 称为“ 翻译变化” 。 我们提出了计算高效的估算、 模拟、 预测和不确定性量化方法, 并通过无症状结果和模拟来显示其有效性。 理论结果允许错误指定模型, 即使专门针对iid 案例, 也允许超出文献中可用的范围。 它们的证明基于通用半参数计算方法估算器的新结果, 这些结果应具有独立的兴趣。 新的模型类别通过20种股票组合的预测回报应用来说明, 这些组合在其中显示良好的预测性能。 文件附有开放源软件的实施。