In this paper, we consider numerical approximation to periodic measure of a time periodic stochastic differential equations (SDEs) under weakly dissipative condition. For this we first study the existence of the periodic measure $\rho_t$ and the large time behaviour of $\mathcal{U}(t+s,s,x) := \mathbb{E}\phi(X_{t}^{s,x})-\int\phi d\rho_t,$ where $X_t^{s,x}$ is the solution of the SDEs and $\phi$ is a test function being smooth and of polynomial growth at infinity. We prove $\mathcal{U}$ and all its spatial derivatives decay to 0 with exponential rate on time $t$ in the sense of average on initial time $s$. We also prove the existence and the geometric ergodicity of the periodic measure of the discretized semi-flow from the Euler-Maruyama scheme and moment estimate of any order when the time step is sufficiently small (uniform for all orders). We thereafter obtain that the weak error for the numerical scheme of infinite horizon is of the order $1$ in terms of the time step. We prove that the choice of step size can be uniform for all test functions $\phi$. Subsequently we are able to estimate the average periodic measure with ergodic numerical schemes.
翻译:在本文中, 我们考虑定期度量定期周期性差异方程式( SDEs) 的数值近似值, 时间周期性周期性差异方程式( SDEs) 是在微弱的消散条件下的。 为此, 我们首先研究是否存在 $\rho_ t$ 美元, 以及 $\ mathcal{U} ( t++cal{U}, s,x) : = mathbb{E ⁇ phi( X ⁇ t ⁇ s,x}) - int\phi d\rho_ t, 美元是 SDEs和 $\phi$ 的解决方案的解决方案, 测试功能是平滑的测试函数, 以及无尽的多边增长的测试函数。 我们证明 $mallcalcalcalcal $ 的周期性公式是最小的, 其空间衍生物在时间上以指数速度衰减为0, 美元 。 我们还证明从 Euler- Marumal- Marama 计划到任何时间步骤的缩度估计, 我们从最小的数值中可以测量到最小的数值。