We study the problem of estimating non-linear functionals of discrete distributions in the context of local differential privacy. The initial data $x_1,\ldots,x_n \in [K]$ are supposed i.i.d. and distributed according to an unknown discrete distribution $p = (p_1,\ldots,p_K)$. Only $\alpha$-locally differentially private (LDP) samples $z_1,...,z_n$ are publicly available, where the term 'local' means that each $z_i$ is produced using one individual attribute $x_i$. We exhibit privacy mechanisms (PM) that are interactive (i.e. they are allowed to use already published confidential data) or non-interactive. We describe the behavior of the quadratic risk for estimating the power sum functional $F_{\gamma} = \sum_{k=1}^K p_k^{\gamma}$, $\gamma >0$ as a function of $K, \, n$ and $\alpha$. In the non-interactive case, we study two plug-in type estimators of $F_{\gamma}$, for all $\gamma >0$, that are similar to the MLE analyzed by Jiao et al. (2017) in the multinomial model. However, due to the privacy constraint the rates we attain are slower and similar to those obtained in the Gaussian model by Collier et al. (2020). In the interactive case, we introduce for all $\gamma >1$ a two-step procedure which attains the faster parametric rate $(n \alpha^2)^{-1/2}$ when $\gamma \geq 2$. We give lower bounds results over all $\alpha$-LDP mechanisms and all estimators using the private samples.


翻译:我们研究在当地差异隐私背景下估算离散分布的非线性功能的问题。 初始数据 $x_ 1,\ ldots, x_n\ in [ K]$, 最初数据应该是 i. d. 并按未知的离散分配 $p = (p_ 1,\ldots, p_ K) 分配。 只有 alpha$- 本地差异私人样本 $z_ 1,... z_ n$ 可以公开使用, 其中“ 本地” 表示每个 $_ i 美元使用一个个人属性$x_ 美元。 我们展示的是互动( 即允许使用已经公布的机密数据) $qp = (p_ 1,\ ldotot, p_ k) 。 美元= calphal- gammat 样本样本 = = 1, 美元 美元 = 美元, 美元= 美元, 美元= 美元=0 美元, 美元= 美元= 美元, 美元= 美元, 美元= 美元=

0
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2021年5月21日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
专知会员服务
16+阅读 · 2021年5月21日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员