Making causal inferences from observational studies can be challenging when confounders are missing not at random. In such cases, identifying causal effects is often not guaranteed. Motivated by a real example, we consider a treatment-independent missingness assumption under which we establish the identification of causal effects when confounders are missing not at random. We propose a weighted estimating equation (WEE) approach for estimating model parameters and introduce three estimators for the average causal effect, based on regression, propensity score weighting, and doubly robust methods. We evaluate the performance of these estimators through simulations, and provide a real data analysis to illustrate our proposed method.
翻译:观察研究的因果关系推论在混淆者并非随机失踪时可能具有挑战性。 在这种情况下,确定因果关系往往得不到保证。受一个真实例子的驱使,我们考虑一个治疗独立的缺失假设,根据这一假设,当混淆者并非随机失踪时,我们确定因果关系的确定。我们提出一个加权估计公式(WEEE)方法,用以估计模型参数,并采用三个根据回归、偏重分加权和双倍稳健的方法估算平均因果关系的估算器。我们通过模拟评估这些估计者的表现,并提供真实的数据分析,以说明我们提出的方法。</s>