In this paper, we propose a method for estimating model parameters using Small-Angle Scattering (SAS) data based on the Bayesian inference. Conventional SAS data analyses involve processes of manual parameter adjustment by analysts or optimization using gradient methods. These analysis processes tend to involve heuristic approaches and may lead to local solutions.Furthermore, it is difficult to evaluate the reliability of the results obtained by conventional analysis methods. Our method solves these problems by estimating model parameters as probability distributions from SAS data using the framework of the Bayesian inference. We evaluate the performance of our method through numerical experiments using artificial data of representative measurement target models.From the results of the numerical experiments, we show that our method provides not only high accuracy and reliability of estimation, but also perspectives on the transition point of estimability with respect to the measurement time and the lower bound of the angular domain of the measured data.
翻译:在本文中,我们建议采用一种方法,根据巴伊西亚推理法来估计模型参数。常规SAS数据分析涉及分析员人工参数调整过程,或使用梯度法优化。这些分析过程往往涉及超自然法方法,并可能导致当地解决办法。此外,很难评估常规分析方法得出的结果的可靠性。我们的方法解决这些问题的方法是利用巴伊西亚推理法框架来估计SAS数据的概率分布,作为SAS数据的概率分布。我们利用具有代表性的测量指标模型的人工数据来评估我们方法的性能。我们从数字实验的结果中可以看出,我们的方法不仅提供了估算的高度准确性和可靠性,而且还提供了关于测量时间和测量数据角域的较低界限的可估计性过渡点的观点。</s>