We present a method to estimate an HDR environment map from a narrow field-of-view LDR camera image in real-time. This enables perceptually appealing reflections and shading on virtual objects of any material finish, from mirror to diffuse, rendered into a real physical environment using augmented reality. Our method is based on our efficient convolutional neural network architecture, EnvMapNet, trained end-to-end with two novel losses, ProjectionLoss for the generated image, and ClusterLoss for adversarial training. Through qualitative and quantitative comparison to state-of-the-art methods, we demonstrate that our algorithm reduces the directional error of estimated light sources by more than 50%, and achieves 3.7 times lower Frechet Inception Distance (FID). We further showcase a mobile application that is able to run our neural network model in under 9 ms on an iPhone XS, and render in real-time, visually coherent virtual objects in previously unseen real-world environments.
翻译:我们从一个狭窄视野的LDR相机实时图像中展示出一种估算人类发展报告环境地图的方法。 这使得从镜面到扩散的任何材料的虚拟物件能够产生感官的反射和阴影, 并用扩大的现实转化为真实的物理环境。 我们的方法基于高效的进化神经网络结构( EnvMapNet ), 经过培训的端到端, 有两个新的损失: 生成图像的投影Los 和 用于对抗性培训的集群LOWs 。 通过质和量的比较, 我们证明我们的算法将估计的光源的方向错误减少了50%以上, 并实现了3.7倍较低的Frechet Inpeption距离(FID ) 。 我们进一步展示了一个移动应用程序, 能够在iPhone XS 上运行我们9米以下的神经网络模型, 并在先前不为人见的现实情况环境中实时生成视觉一致的虚拟物体。