This work presents improvements in monocular hand shape estimation by building on top of recent advances in unsupervised learning. We extend momentum contrastive learning and contribute a structured collection of hand images, well suited for visual representation learning, which we call HanCo. We find that the representation learned by established contrastive learning methods can be improved significantly by exploiting advanced background removal techniques and multi-view information. These allow us to generate more diverse instance pairs than those obtained by augmentations commonly used in exemplar based approaches. Our method leads to a more suitable representation for the hand shape estimation task and shows a 4.7% reduction in mesh error and a 3.6% improvement in F-score compared to an ImageNet pretrained baseline. We make our benchmark dataset publicly available, to encourage further research into this direction.


翻译:这项工作在未受监督的学习的最新进展的基础上,改进了单手形状的估算。 我们扩展了对比学习的势头,并提供了结构化的手图象收集,这些图象非常适合视觉演示学习,我们称之为“韩高”。 我们发现,通过利用先进的背景清除技术和多视图信息,可以大大改进通过既定对比学习方法获得的代表性。这使我们能够产生比以实例为基础的方法通常使用的扩增获得的对等实例。我们的方法使得手形估测任务得到更合适的代表,并显示网状误差减少了4.7%,F类芯比图像网预先培训的基线改进了3.6%。我们公布我们的基准数据,鼓励进一步研究这个方向。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
27+阅读 · 2020年12月24日
Arxiv
5+阅读 · 2020年10月22日
Arxiv
7+阅读 · 2020年10月9日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员