Semantic understanding of the surrounding environment is essential for automated vehicles. The recent publication of the SemanticKITTI dataset stimulates the research on semantic segmentation of LiDAR point clouds in urban scenarios. While most existing approaches predict sparse pointwise semantic classes for the sparse input LiDAR scan, we propose PillarSegNet to be able to output a dense semantic grid map. In contrast to a previously proposed grid map method, PillarSegNet uses PointNet to learn features directly from the 3D point cloud and then conducts 2D semantic segmentation in the top view. To train and evaluate our approach, we use both sparse and dense ground truth, where the dense ground truth is obtained from multiple superimposed scans. Experimental results on the SemanticKITTI dataset show that PillarSegNet achieves a performance gain of about 10% mIoU over the state-of-the-art grid map method.
翻译:对周围环境的语义理解对于自动化车辆来说至关重要。 最近出版的SemanticKITTI数据集刺激了对城市情景中LiDAR点云云的语义分割的研究。 虽然大多数现有方法预测了稀疏输入的LiDAR扫描的稀疏点语义类,但我们建议PropsSegNet能够输出密集的语义网格地图。 与先前提议的网格地图方法相反, PropsSegNet 使用PointNet 直接从 3D 点云中学习特征,然后在顶部视图中进行 2D 语义分割。 为了培训和评估我们的方法,我们使用分散和密集的地面真理, 在那里从多重超声扫描中获取稠密的地面真相。 SemmanticKITTI 数据集的实验结果显示,PropsSegNet在州格图方法上取得了约10% mIoU的性能增益。