Estimating the spectral density function $f(w)$ for some $w\in [-\pi, \pi]$ has been traditionally performed by kernel smoothing the periodogram and related techniques. Kernel smoothing is tantamount to local averaging, i.e., approximating $f(w)$ by a constant over a window of small width. Although $f(w)$ is uniformly continuous and periodic with period $2\pi$, in this paper we recognize the fact that $w=0$ effectively acts as a boundary point in the underlying kernel smoothing problem, and the same is true for $w=\pm \pi$. It is well-known that local averaging may be suboptimal in kernel regression at (or near) a boundary point. As an alternative, we propose a local polynomial regression of the periodogram or log-periodogram when $w$ is at (or near) the points 0 or $\pm \pi$. The case $w=0$ is of particular importance since $f(0)$ is the large-sample variance of the sample mean; hence, estimating $f(0)$ is crucial in order to conduct any sort of inference on the mean.
翻译:光谱密度函数的估算值为$w(w)美元[-\pi,\pi]美元,美元美元是传统上用内核平滑周期图和相关技术来计算的。 内核平滑等于本地平均, 即小宽窗口的常数接近美元(w) 美元, 即接近美元(w) 美元(w) 美元, 以小宽窗口的常数表示。 虽然美元(f) 美元(w) 是连续的, 周期为2美元(pi美元), 但本文中我们承认, 美元=0美元(0美元) 有效地作为潜在内核滑动问题的边界点, 而美元(p) 和美元(pi美元) 的情况也是如此。 众所周知, 在(或附近)一个边界点的内层回归中,当地平均平均值可能低于当地平均值。 当美元时, 我们建议对周期图或日志周期图进行局部的多数值回归。 美元(或接近0美元) 案件=0美元(0美元) 特别重要, 因为美元(f) 是某位的汇率的临界值。