This paper narrows the gap between previous literature on quantum linear algebra and practical data analysis on a quantum computer, formalizing quantum procedures that speed-up the solution of eigenproblems for data representations in machine learning. The power and practical use of these subroutines is shown through new quantum algorithms, sublinear in the input matrix's size, for principal component analysis, correspondence analysis, and latent semantic analysis. We provide a theoretical analysis of the run-time and prove tight bounds on the randomized algorithms' error. We run experiments on multiple datasets, simulating PCA's dimensionality reduction for image classification with the novel routines. The results show that the run-time parameters that do not depend on the input's size are reasonable and that the error on the computed model is small, allowing for competitive classification performances.
翻译:本文缩小了以前关于量子线性代数的文献与量子计算机实际数据分析之间的差距,正式确定了加速机器学习中数据表达形式解析的量子程序。这些子例程的力量和实际用途通过新的量子算法、输入矩阵大小的子线性、主要组成部分分析、通信分析和潜在语义分析来显示。我们提供了运行时间的理论分析,并证明随机算法错误的严格界限。我们进行了多个数据集实验,用新例例来模拟图像分类的五氯苯甲醚的维度减少。结果显示,不取决于输入大小的运行时间参数是合理的,计算模型上的错误很小,允许竞争性分类性表现。