Consider the problem of simultaneous estimation of location and variance matrix under Huber's contaminated Gaussian model. First, we study minimum $f$-divergence estimation at the population level, corresponding to a generative adversarial method with a nonparametric discriminator and establish conditions on $f$-divergences which lead to robust estimation, similarly to robustness of minimum distance estimation. More importantly, we develop tractable adversarial algorithms with simple spline discriminators, which can be implemented via nested optimization such that the discriminator parameters can be fully updated by maximizing a concave objective function given the current generator. The proposed methods are shown to achieve minimax optimal rates or near-optimal rates depending on the $f$-divergence and the penalty used. This is the first time such near-optimal error rates are established for adversarial algorithms with linear discriminators under Huber's contamination model. We present simulation studies to demonstrate advantages of the proposed methods over classic robust estimators, pairwise methods, and a generative adversarial method with neural network discriminators.
翻译:考虑在Huber被污染的高斯模型下同时估计位置和差异矩阵的问题。 首先,我们研究人口层面最低值美元差异值估计,对应非参数歧视的基因对抗性对抗方法,并针对导致可靠估计的美元差异值设定条件,类似于最低距离估计的稳健性。 更重要的是,我们用简单的样板区分器开发可移植的对抗性算法,可通过嵌套优化实施,这样,根据目前的生成器,通过最大限度地提高一个相近目标功能,可充分更新歧视参数。 提议的方法显示,根据美元差异和使用的处罚,将达到最小值最佳率或近于最佳率。 这是首次在Huber污染模型下,为与线性歧视器的对抗性算法设定了近于最佳的错误率。 我们提出模拟研究,以证明拟议方法优于典型的强度估计器、配对方法,以及与神经网络歧视器的基因化对抗性对抗法的优势。