In this paper, we use the language of noncommutative differential geometry to formalise discrete differential calculus. We begin with a brief review of inverse limit of posets as an approximation of topological spaces. We then show how to associate a $C^*$-algebra over a poset, giving it a piecewise-linear structure. Furthermore, we explain how dually the algebra of continuous function $C(M)$ over a manifold $M$ can be approximated by a direct limit of $C^*$-algebras over posets. Finally, in the spirit of noncommutative differential geometry, we define a finite dimensional spectral triple on each poset. We show how the usual finite difference calculus is recovered as the eigenvalues of the commutator with the Dirac operator. We prove a convergence result in the case of the $d$-lattice in $\mathbb{R}^d$ and for the torus $\mathbb{T}^d$.


翻译:在本文中,我们使用非交换微分几何的语言来形式化离散微分计算。我们首先简要回顾偏序集的逆极限作为拓扑空间的近似方法。然后,我们展示如何将$C^*$-代数与偏序集联系起来,并赋予其分段线性结构。此外,我们解释了$C^*$-代数在偏序集上的直极限如何与流形$M$上的连续函数代数$C(M)$相对应。最后,在非交换微分几何的思想下,我们在每个偏序集上定义了一个有限维谱三元组。我们展示了如何通过与Dirac算子的对易子的特征值来恢复通常的有限差分微积分。我们证明了在$d$-晶格上和环面$\mathbb{T}^d$上的情况下的收敛性结果。

0
下载
关闭预览

相关内容

【2023新书】常微分方程的数值方法,134页pdf
专知会员服务
44+阅读 · 2023年2月22日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
42+阅读 · 2020年12月18日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
einsum is all you needed!
极市平台
1+阅读 · 2022年7月27日
重磅开讲:图灵奖得主—— Joseph Sifakis
THU数据派
0+阅读 · 2022年6月13日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月5日
VIP会员
相关VIP内容
【2023新书】常微分方程的数值方法,134页pdf
专知会员服务
44+阅读 · 2023年2月22日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
42+阅读 · 2020年12月18日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员