In many real world medical image classification settings we do not have access to samples of all possible disease classes, while a robust system is expected to give high performance in recognizing novel test data. We propose a generalized zero shot learning (GZSL) method that uses self supervised learning (SSL) for: 1) selecting anchor vectors of different disease classes; and 2) training a feature generator. Our approach does not require class attribute vectors which are available for natural images but not for medical images. SSL ensures that the anchor vectors are representative of each class. SSL is also used to generate synthetic features of unseen classes. Using a simpler architecture, our method matches a state of the art SSL based GZSL method for natural images and outperforms all methods for medical images. Our method is adaptable enough to accommodate class attribute vectors when they are available for natural images.
翻译:在许多现实世界的医疗图像分类设置中,我们无法获取所有可能的疾病类别样本,而一个强大的系统有望在识别新测试数据方面产生很高的性能。我们建议采用普遍零镜头学习(GZSL)方法,使用自我监督学习(SSL),用于:(1) 选择不同疾病类别中的锚矢量;(2) 培训特效生成器。我们的方法并不要求为自然图像提供类属性矢量,但医学图像则不使用。SSL确保锚矢量代表每个类别。SSL还被用于生成不可见类的合成特征。使用更简单的结构,我们的方法与基于科学的SSL的自然图像的GZSL方法相匹配,并超越了医学图像的所有方法。我们的方法在为自然图像提供类属性矢量时足以适应类属性矢量。