In this article, we relax the Bayesianity assumption in the now-traditional model of Bayesian Persuasion introduced by Kamenica \& Gentzkow. Unlike preexisting approaches -- which have tackled the possibility of the receiver (Bob) being non-Bayesian by considering that his thought process is not Bayesian yet known to the sender (Alice), possibly up to a parameter -- we let Alice merely assume that Bob behaves `almost like' a Bayesian agent, in some sense, without resorting to any specific model. Under this assumption, we study Alice's strategy when both utilities are quadratic and the prior is isotropic. We show that, contrary to the Bayesian case, Alice's optimal response may not be linear anymore. This fact is unfortunate as linear policies remain the only ones for which the induced belief distribution is known. What is more, evaluating linear policies proves difficult except in particular cases, let alone finding an optimal one. Nonetheless, we derive bounds that prove linear policies are near-optimal and allow Alice to compute a near-optimal linear policy numerically. With this solution in hand, we show that Alice shares less information with Bob as he departs more from Bayesianity, much to his detriment.


翻译:在本篇文章中,我们放松了卡梅尼卡·金茨科夫(Kamenica à Gentzkow)在目前传统的巴伊西亚预测模型中采用的巴伊西亚假设。与以前的做法不同,我们以前的做法解决了接受者(Bob)成为非巴伊西亚人的可能性,因为考虑到他的思维过程不是巴伊西亚人所知道的(爱丽丝),甚至可能是一个参数,我们让爱丽丝只是假设鲍勃的行为“最像”巴伊西亚代理人,在某种意义上不诉诸任何特定模式。根据这一假设,我们研究爱丽丝的战略,当两者都是二次二次不同,我们发现与巴伊西亚案例相反,爱丽丝的最佳反应可能不再是线性。这个事实很不幸,因为线性政策仍然是人们所知道的唯一政策。更糟糕的是,评价线性政策证明很困难,但特定情况除外,更不用说找到一个最佳模式。然而,我们从证明线性政策的界限是近乎理想的,允许爱丽丝对近视线性线性政策进行比较,而前一次是零度的。我们表明,爱丽丝的最佳反应可能不再是线性线性政策。这个解决方案,我们从鲍尔斯的比他更低的版本。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月27日
Arxiv
0+阅读 · 2023年2月23日
Arxiv
11+阅读 · 2022年9月1日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员