In a seminal paper in 2013, Witt showed that the (1+1) Evolutionary Algorithm with standard bit mutation needs time $(1+o(1))n \ln n/p_1$ to find the optimum of any linear function, as long as the probability $p_1$ to flip exactly one bit is $\Theta(1)$. In this paper we investigate how this result generalizes if standard bit mutation is replaced by an arbitrary unbiased mutation operator. This situation is notably different, since the stochastic domination argument used for the lower bound by Witt no longer holds. In particular, starting closer to the optimum is not necessarily an advantage, and OneMax is no longer the easiest function for arbitrary starting position. Nevertheless, we show that Witt's result carries over if $p_1$ is not too small and if the number of flipped bits has bounded expectation~$\mu$. Notably, this includes some of the heavy-tail mutation operators used in fast genetic algorithms, but not all of them. We also give examples showing that algorithms with unbounded $\mu$ have qualitatively different trajectories close to the optimum.
翻译:在2013年的创世文件中, Witt 显示, 标准位突变需要时间( 1+1) 的进化算法( 1+1), 标准位突变标准比重的进化算法需要时间 $(1+o(1)) n\ ln/ p_ 1$), 以找到任何线性函数的最佳值, 只要翻转精确一位的概率$p_ 1美元是 $\ Theta(1)$ 。 在本文中, 我们调查如果标准位突变由任意的不偏倚的突变操作器取代的话, 此结果会如何概括化 。 这一情况明显不同, 因为Witt 下限的下限使用的重整变异控参数不再存在 。 特别是, 开始接近最佳值的 OneMax不一定是一个优势, 也不是任意启动位置的最容易的函数 。 然而, 我们显示, 如果 $\ $ 1 美元并不太小,, 并且 翻转位数数的比值的预期为~ $\ $ $ 。 。</s>