In this paper we deal with the problem of sequential testing of multiple hypotheses. The main goal is minimising the expected sample size (ESS) under restrictions on the error probabilities. We use a variant of the method of Lagrange multipliers which is based on the minimisation of an auxiliary objective function (called Lagrangian). This function is defined as a weighted sum of all the test characteristics we are interested in: the error probabilities and the ESSs evaluated at some points of interest. In this paper, we use a definition of the Lagrangian function involving the ESS evaluated at any finite number of fixed parameter points (not necessarily those representing the hypotheses). Then we develop a computer-oriented method of minimisation of the Lagrangian function, that provides, depending on the specific choice of the parameter points, optimal tests in different concrete settings, like in Bayesian, Kiefer-Weiss and other settings. To exemplify the proposed methods for the particular case of sampling from a Bernoulli population we develop a set of computer algorithms for designing sequential tests that minimise the Lagrangian function and for the numerical evaluation of test characteristics like the error probabilities and the ESS, and other related. For the Bernoulli model, we made a series of computer evaluations related to the optimality of sequential multi-hypothesis tests, in a particular case of three hypotheses. A numerical comparison with the matrix sequential probability ratio test is carried out.
翻译:在本文中,我们处理的是对多个假设进行顺序测试的问题。在对错误概率的限制下,主要目标是将预期的样本规模(ESS)最小化。我们使用一个基于最小化辅助目标函数(称为Lagrangian)的Lagrange乘数方法的变体。这个函数被定义为我们感兴趣的所有测试特征的加权总和:误差概率和在某些感兴趣的地方评估的ESS。在本文中,我们使用一个Lagrangian函数的定义,涉及在固定参数点的任何有限数量(不一定代表假设值)下评估的ESS的预期样本规模。然后我们开发一个以计算机为导向的最小化 Lagrangian函数的最小化方法,该方法根据参数的具体选择,在不同的具体环境下提供最佳测试,如在Bayesian、Kiefer-Weiss和其他环境。为了向伯尔尼利人口取样的特定案例解释拟议的方法,我们开发一套计算机算法,用于设计最短化Lagrangian 的模型和与Birnical序列相关的数值测试,例如我们在Birglangial测试中进行的一个特定的数值测试。</s>