Personalized medicine has gained much popularity recently as a way of providing better healthcare by tailoring treatments to suit individuals. Our research, motivated by the UK INTERVAL blood donation trial, focuses on estimating the optimal individualized treatment rule (ITR) in the ordinal treatment-arms setting. Restrictions on minimum lengths between whole blood donations exist to safeguard donor health and quality of blood received. However, the evidence-base for these limits is lacking. Moreover, in England, the blood service is interested in making blood donation both safe and sustainable by integrating multi-marker data from INTERVAL and developing personalized donation strategies. As the three inter-donation interval options in INTERVAL have clear orderings, we propose a sequential re-estimation learning method that effectively incorporates "treatment" orderings when identifying optimal ITRs. Furthermore, we incorporate variable selection into our method for both linear and nonlinear decision rules to handle situations with (noise) covariates irrelevant for decision-making. Simulations demonstrate its superior performance over existing methods that assume multiple nominal treatments by achieving smaller misclassification rates and larger value functions. Application to a much-in-demand donor subgroup shows that the estimated optimal ITR achieves both the highest utilities and largest proportions of donors assigned to the safest inter-donation interval option in INTERVAL.


翻译:最近,个人医学作为一种通过定制适合个人的治疗方法提供更好的保健的方式,最近受到人们的欢迎。我们的研究在英国国际海军间献血试验的推动下,侧重于在正统治疗武器设置中估计最佳个人化治疗规则(ITR)。对整个献血者的最低长度有限制,以保障捐赠者的健康和所收血液的质量。然而,缺乏这些限制的证据依据。此外,在英格兰,血液服务有意通过整合INTEV的多标记数据,制定个性化捐赠战略,使献血既安全又可持续。由于InterVAL的三种捐赠间隔选择都有明确的命令,我们建议了一种顺序上的重新估算学习方法,在确定最佳ITR时有效地纳入“治疗”命令。此外,我们把不同选择纳入我们处理线性和非线性决定规则的方法,以便处理与决策无关的情况。模拟表明,它优于现有方法,即假设多种名义治疗方法,即降低分类率和更大的价值功能。在IVAL中,对一个高要求的捐赠者间最大选择分组的应用显示,在最高一级分配的ITR中,最高级的捐助者之间估计了最佳选择。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
11+阅读 · 2021年12月8日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
22+阅读 · 2019年11月24日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
Arxiv
19+阅读 · 2022年7月29日
Arxiv
11+阅读 · 2021年12月8日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
22+阅读 · 2019年11月24日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员