Information cascade in online social networks can be rather negative, e.g., the spread of rumors may trigger panic. To limit the influence of misinformation in an effective and efficient manner, the influence minimization (IMIN) problem is studied in the literature: given a graph G and a seed set S, blocking at most b vertices such that the influence spread of the seed set is minimized. In this paper, we are the first to prove the IMIN problem is NP-hard and hard to approximate. Due to the hardness of the problem, existing works resort to greedy solutions and use Monte-Carlo Simulations to solve the problem. However, they are cost-prohibitive on large graphs since they have to enumerate all the candidate blockers and compute the decrease of expected spread when blocking each of them. To improve the efficiency, we propose the AdvancedGreedy algorithm (AG) based on a new graph sampling technique that applies the dominator tree structure, which can compute the decrease of the expected spread of all candidate blockers at once. Besides, we further propose the GreedyReplace algorithm (GR) by considering the relationships among candidate blockers. Extensive experiments on 8 real-life graphs demonstrate that our AG and GR algorithms are significantly faster than the state-of-the-art by up to 6 orders of magnitude, and GR can achieve better effectiveness with its time cost close to AG.


翻译:在线社交网络的信息串联可能是相当消极的,例如,谣言的传播可能会引发恐慌。为了限制错误信息的影响,文献对影响最小化(IMIN)问题进行了研究:根据图表G和种子S,在最大 b 的顶点上封住种子组的影响力最小化。在本文中,我们首先证明IMIN问题是硬的,很难估计的。由于问题的难度,现有工作诉诸贪婪的解决方案,并利用蒙特卡洛模拟来解决问题。然而,这些影响最小化(IMIN)问题在大图上却具有成本抑制作用,因为它们必须罗列所有候选阻塞者,并在堵住每个目标时计算预期扩散的减少量。为了提高效率,我们建议高级Greedy算法(AGA)基于一种新的图形取样技术,应用了调控树结构,它可以一次理解所有候选人阻塞者的预期扩散的减少量。此外,我们进一步建议GreedReplace算法(GR)在大型图表上具有成本比AGRA更接近的频率,通过考虑AGRA系统进行更接近的实验室,从而更接近AGRA的G-G-GIGG-GGAR系统能够更接近地展示更接近地展示其实际的进度。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
15+阅读 · 2021年11月19日
Arxiv
64+阅读 · 2021年6月18日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员