While the traditional viewpoint in machine learning and statistics assumes training and testing samples come from the same population, practice belies this fiction. One strategy -- coming from robust statistics and optimization -- is thus to build a model robust to distributional perturbations. In this paper, we take a different approach to describe procedures for robust predictive inference, where a model provides uncertainty estimates on its predictions rather than point predictions. We present a method that produces prediction sets (almost exactly) giving the right coverage level for any test distribution in an $f$-divergence ball around the training population. The method, based on conformal inference, achieves (nearly) valid coverage in finite samples, under only the condition that the training data be exchangeable. An essential component of our methodology is to estimate the amount of expected future data shift and build robustness to it; we develop estimators and prove their consistency for protection and validity of uncertainty estimates under shifts. By experimenting on several large-scale benchmark datasets, including Recht et al.'s CIFAR-v4 and ImageNet-V2 datasets, we provide complementary empirical results that highlight the importance of robust predictive validity.
翻译:虽然机器学习和统计的传统观点假定培训和测试样本来自同一人口,但实践却与这种假设相矛盾。因此,一个战略 -- -- 来自于稳健的统计和优化 -- -- 是建立一个对分布性扰动具有活力的模型。在本文件中,我们采取不同的方法描述稳健的预测推论程序,其中模型提供其预测的不确定性估计,而不是点预测。我们提出的一种方法是,产生预测数据集(几乎是准确的),为在培训人口周围的美元波动球中进行的任何测试分布提供适当的覆盖水平。根据一致推断,一种方法仅在培训数据可以互换的条件下,在限定样本中实现(近距离)有效覆盖。我们的方法的一个基本组成部分是估计预期的未来数据变化的数量,并建立起对预测的稳健性;我们开发了估计数据,并证明它们对于变化中的不确定性估计的保护和有效性具有一致性。我们通过实验一些大型基准数据集,包括Recht等人的CAFAR-V4和图像网络V2数据集,我们提供了可靠的补充性实验结果,以突出未来数据转换的重要性。</s>